PERFORMANCE OF RICHARDSON EXTRAPOLATION ON SOME NUMERICAL METHODS FOR A SINGULARLY PERTURBED TURNING POINT PROBLEM WHOSE SOLUTION HAS BOUNDARY LAYERS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Numerical solution of a singularly perturbed two-point boundary-value problem using collocation

In this paper we study a class of numerical methods to solve a singularly perturbed two-point boundary value problem. Our schemes arise as result of choosing an appropriate basis for the solution, as well as making use of collocation. It is possible to obtain arbitrarily high-order methods. We note that, in some cases (constant coefficients), we obtain the exact solution. Particular attention i...

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2014

ISSN: 0304-9914

DOI: 10.4134/jkms.2014.51.4.679